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It is shown that, given a compact metrizable HausdorlT space K and a dense
sequence (In) in K, there is a monotone basis of C(K) which is interpolating with
nodes(t,,). This gives a positive answer to a question raised by Gurarii.' 1988
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1. INTRODUCTION

Let X be a Banach space and (e,J a sequence of elements of X. (en) is
called a basis of X if, for each x E X, there is exactly one representation of x
of the form x = Lk~ I rJ.ke b rJ. k real or complex numbers. In this case, by
uniform boundedness, we have SUPn II Sn II < 00, where Sn(x) = L% ~ I rJ. kek'

n= 1, 2, .... sUPn IISnl1 is called the basis constant of (xn). If sUPn IISnl1 = I,
then (en) is called a monotone basis.

In spaces of continuous functions on compact Hausdorff spaces K (C(K)­
spaces), one can connect bases with the notion of interpolation of
functions:

A basis (e,,) of a C(K)-space is called interpolating with nodes t" E Kif,
for each fE C(K), f(t k ) = S,,(f)(t k ), k = 1, ..., n, n = 1, 2, ... [5]. In this case
the nodes (t,,) are necessarily dense in K [5, Proposition 1.3.7]. The
foremost example of an interpolating basis is the Schauder system (e,,) in
C(O, 1). This basis is closely connected with a sequence of special peaked
partitions of unity e i. ,I' i = 1, ..., n, n = I, 2, ..., of C(O, 1). That is,

"°:s; e i. " :s; I, Lei. " = I,
i= I

{
I,

e i• ,,(td = 0,
i=k
i # k if k = 1, ... , n,

and span{ ei. ,,+ I };'':+-/ :::J span{ ei."};'~). {t), t2 , •.. } is a given sequence dense
in [0,1].. Here the Schaudersystem (with respect to t 1 , t2 , ••• ) is defined by
en = e". 'I' n = 1, 2, .... One easily obtains that (e,,) is a monotone basis and,
for each fEC(O,I), f(tk)=L7~J(ti)ei.,,(tk)=S,,(f)(td,k=I,2, ... ,n,
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n= 1, 2, ... ([5,2.3] broken-line interpolation). Note that the preceding
conditions on ei,1I imply that {e i, 111 i = 1, ... , n} corresponds to the unit
vector basis in span{e i,II}7=1 ~l"oc (112:;'=llX i e i ,1I11 =max i IlXil).

Gurarii showed in [1] that for each [; > 0, any compact metrizable
Hausdorff space K and sequence (til) dense in K there is a basis of C(K)
which has a basis constant ~ 1+ [; and which interpolates with nodes (til)'
Since the construction in [1] does not yield a monotone basis in general
Gurarii raised the question whether there is, in any separable C(K)-space, a
monotone basis interpolating for prescribed notes [1; 5, 4.3.5].

We give a positive answer to this question by constructing bases in a
larger class of Banach spaces including C(K)-spaces, which are monotone
and interpolate for given nodes. These bases again have the characteristic
features of the Schauder systems described above. Indeed the Schauder
systems on [0, 1] and their generalizations to functions with several
variables [5, Chap. 3] are special cases of the following construction.

2. ADMISSIBLE BASES IN L1-PREDUAL SPACES

Let X be a Banach space whose dual is isometrically isomorphic to an
L1-space. For simplicity we consider Banach spaces over the real numbers,
however, all constructions carryover to the complex field. The class of L t­

predual spaces of course includes C(K)-spaces and moreover, e.g., sublat­
tices of C(K), simplex spaces (i.e., spaces of continuous affine functions on
a compact Choquet simplex) and C,,(K)-spaces (i.e., where K is a compact
Hausdorff space, (J: K -+ K is a continuous involution and C,,(K) =
{fEC(K)lf((Jk)= -f(k) for all kEK}) [2].

DEFINITION. Let X be an L1-predual space and assume that (/)11 are
elements of the extreme point set of the unit ball of X*, ex B(X*). A basis
(ell) of X is called interpolating with nodes ((/)11) if, for every fE X, (/)Af) =
(/)k(SII(f)), k = 1, ..., n, n = 1, 2, .... Here SII(f) = 2:k= 1 IXkek iff = 2:k~ 1 IXkek'
In case X = C(K), the elements of ex B(X*) are the Dirac functionals (up to
the sign) of the elements in K. Hence in this case the notion of an inter­
polating basis coincides with that of Section 1.

The following proposition is due to Lazar and Lindenstrauss [2,4].

PROPOSITION 1. Let X be a separable Banach space. Then X* ~ L t iff
there are subspaces E 1 c E 2 C ... c X such that X = UEn and En ~ l~x for
all n.



INTERPOLATlNG BASES 109

Let e" II' i = 1, ..., n, be the unit vector basis of E" ~ l'~,. Then, after a
suitable rearrangement of the indices, there are numbers lJ. i,,, such that

ei,n=ei,n+1 +cJ.i,nen+l,II+1' i== t, "0' n.

Put e"=e",,, for all n. Then we have [4; 3, Lemma 1.1].

(* )

PROPOSITION 2. (e,,) is a monotone basis of X = UE".

We call bases of X, which are constructed in this way, admissible bases. If
X is a simplex space (which is equivalent to ex B(X) i= 0) then the e"" can
be taken to be peaked partions of unity (p.p.u.'s). That is, O~ei,,,~ 1 and
L;'~ 1 e"" = 1 in addition for all n [2]. In this case we call (e,,) a p.p.u. basis
of X.

PROPOSITION 3. Admissible bases are interpolating.

Proof We retain the preceding notation. For each n there is a unique
c[J"Eex B(X*) with

i=n

i i= n
for all i = 1, ... , n + m, m = 0, 1, 2,... [3, 6].

U sing induction, one obtains, by (*),

"
S,,(f) = L c[J ;(f) e i. "

I~ 1

for each f E X.

Then clearly c[Jk(S,,(f)) = c[Jk(f), k = I, ..., n. I
The c[J" of the preceding proof are called the functionals associated with

the admissible basis (e,,).

THEOREM. Let X be a separable LJ-predual space. Assume that
c[J"EexB(X*), n=I,2, ... , satisfy c[J"i=±c[Jm if ni=m and
{± c[J,,1 n = 1, 2, ... } = ex B(X*) (w*-closures). Then there is an admissible
basis e t , e2 , ... of X whose associatedfunctionals are c[Jt, c[Jz, .... Moreover, !f
X is a simplex space and c[J" E (ex B( X*)) + then e l' ez, ... can be chosen to be
a p.p.u.-basis.

If X = C(K) this includes, in view of Propositions 2 and 3, a positive
answer to the problem of Gurarii mentioned in Section 1. We postpone the
proof of the Theorem to Section 4. First, we shall study some special
properties of admissible bases.
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3. PROPERTIES OF ADMISSIBLE BASES

Throughout this section let X be a separable LI-predual space.

LEMMA 1 (Extension property). Let el, ... , en be an admissible basis ala
subspace E c X. Assume that G c X is finite dimensional and take £ > O. Then
there are a positive integer m and elements en + I' ... , en + mE X such that

(1) e l' ... , en + m is an admissible basis sequence spanning a subspace F

(2) inf{ II g - flllfE F} ~ £11 gil for all g E G.

Proof By [2, Theorem 3.1] there is an ln
k
+m-subspace Fe X containing

E with

inf{llg- flllfEF} ~£llgll for all gE G.

Since E';i.I:C there are subspaces E= Eo c E1C E2C ... C Em = F, where
Ek';i.l''xc+ k for all k [4]. Let ei"" i=l, ... ,n, be the unit vector basis of
E';i. 1:C such that en = en, n' Then one can find an arrangement of the indices
of the unit vector basis of E 1 , e i, n + I> i = 1, ... , n + 1, such that

e;,n=e;,n+1 +rxien+J,n+J' i= 1, ... , n,

for some numbers (Xi [4]. Put en + J = en + I, n+ I' Induction concludes the
proof. I

LEMMA 2 (Permutation property). Let (ed be an admissible basis of X
whose associated functions are (tPk)' If tPn+ 1(e n) = 0 for some n then
el, ... ,en_l,en+l,en,en+2,'" is an admissible basis of X with associated
functionals tP l , ... , tPn- J, tPn+l , tP n, tPn+2, ....

Proof Put Ek = span {el, ..., ek}' Hence Ek = l~, k = 1, 2, .... Consider
the unit vector basis e i. k of Eb i = 1, ... , k, such that ek =ek, k' We have

(1) ei,n_l=e;,n+tPn(ei,n_den, i=I, ...,n-l and

(2) ej , n= ej , n+ 1 + tP n+ I (ej, n) en + 1, j = 1, ..., n. Hence

(3) en, n+ I = en by our assumption. We obtain

(4) ei,n-J = e;,n+1 + tPn(ei,n-den,n+1 + (tPn+l(ei,n) + tPn(ei,n-l)
tPn+ 1(en)) en + 1 = e i, n+ 1 + tPn(e i, n- I) en, n+ I + tPn+ 1(e i, n) en + I' Put

(5) ei,n=ei,n+l+tPn(ei,n-l)en,n+1> i=I, ...,n-l, en,n=en+I' Then
e I, n' ... , en, n is the unit vector basis of l':x. since

= max IA;I
i~n

for all Ai'
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(6) e;,n+l=ei,n+l' i=I, .."n-l, en,n+l=en+l , en+l.n+l=en,n+I'

Again, IILt;;iJ.jej,n+111 = SUP{Ic[>k(Lj'~iAlj,n+I)llk=I, ... ,n+l}
maxj,,;n+ I I/'jl, for all I'j' We have (1,4,5)

e i. JI - I == ei. n + ep 11 + 1(e i, 11) en. !1'

and

i= I, ... , n - I

en. n == en. 11 + 1 •

i = I, ... , n - I (( 3), (4), (5), (6)),

Since en,n=en+1, en+l,n+l=en we obtain Lemma 2. I
In the following lemma let ei"p i= I, ... , n, be the unit vector basis of

span{el' ..., en} with en=en"I' n= I, 2, ....

LEMMA 3 (Exchange property). Let (ek) be an admissible basis of X
whose associated functionals are (c[>d. Then, for any index set
{n+I, ... ,n+m}, the sequence el,···,en, en+1,I1+m, en+2.n+nl"'" en+m ,

en + m + I' ... is an admissible basis of X whose associated functionals are again
( c[> k) (in the same order).

Proof It suffices to assume m = 2, Lemma 3 follows then by using
induction. (The case m = I is trivial because en +I, n+1 = en +1)' We have

Put

and

+ f/J n + I (e i, ,J C/J n + 2 (e n + I, n + I ) ) ell + 2, n + 2'

Cn+1,n+J =en + 1• n + 2 •

i= I, ..., n. (I)

i= I, ..., n, (2)

(3 )

Then {e i , n + 11 i = I, ..., n + I} is the unit vector basis of l:t I. Moreover, by
(I), (2), (3), ei,n=ei,n+I+c[>11+1(ei.n)en+I.I1+1, i=l, ... ,n, and ej • n+l =
ej,n+2+c[>n+2(ej,n+l)en+2.11+2,j=I, .."n+1. The latter equation follows
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e= +1, -,

from (3), ifj=n+l, since cPn+2(en+l,n+2)=O. Ifj<n+1 this equation
follows from (2) since then

This concludes the proof in view of (3), I
In the proof of the next lemma we make use of the following fact due to

Lazar and Lindenstrauss [2, Theorem 2.1], we state here only a special
version:

Consider T = conv(TI U - Td, where T 1 is a w*-closed face of
B(X*). Let f: B(X*) ---> IR be concave, w*-continuous and assume
f(x*) + f( - x*) ~ 0 for all x* E B(X*). Suppose e: T ---> IR is w*­
continuous, affine and e(O) = 0 such that e ~flr' Then there is
e E X with e(x*) = x*(e), x* ET, and x*(e) ~f(x*), x* E B(X*).

LEMMA 4 (Dual extension property). Let e 1, ... , en be an admissible
basis of a subspace EcX. Let cP1"."cP"EexB(X*) be such that cP klE ,
k = 1, ..., n, are the corresponding associated functionals. Consider
cPEexB(X*)\{±cPklk=I, ...,n}. Then there is eEX such that el, ... ,e,I'
e is an admissible basic sequence spanning a subspace F c X and
cP l1F , ... , cP"IF' cP lF are the corresponding associatedfunctionals.

Proof Let e i, ", i = I, ... , n, be the unit vector basis of l'~ ~ E with
en=e".n' Put T 1 =conv{cP 1, ..., cP", cP} and T=conv(T I u -Td. Then T 1

is a w*-closed face of B(X*) (because x* ~ L 1 and cP 1 , ... , cPn,
cP Eex B(X* )). Define f: B(X*) ---> IR by

f(x*) = min {( 1- Itl eix*(ei,n))1(1 - itl eicP(ei,n))1

i=I, ... ,n, such that itl eicP(ei,n)'f I }, x*EB(X*).

It is easily checked that f is concave, w*-continuous and
f(x*) + f( -x*) ~ 0 for all x* E B(X*). We even have f(x*), f( -x*) ~ 0
since L7~ 1 ix*(ei,n)1 ~ 1. Put

(1) e(A.cP+L7~1A.;cPi)=A, if 1).I+L7~llA.il~1. We have e(x*)~

f(x*) for all x* E r. Hence there is e E X such that

(2) x*(e)=e(x*), x*ET,

(3) x*(e)~f(x*), x*EB(X*). Put

(4) e;,n+ 1 =e;,n- cP(e;,n) e, i= I, ..., n, and en+I.n+ 1 = e.
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Then by (1), (2), (4),
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{
I,

cJ>j( e i, II + I) = 0,
i= j

i '* j'
cJ>( e i, II + d = 0, i < n + 1,

Moreover, by (3) and (4),

cJ>/ell+1,1I+1)=0, j=I,,,,,n.

n+l

L ix*(ei,11+ dl ~ 1
i= I

forall x*EB(X*),

This proves that e i, 11 + I' i = 1, ... , n + 1, is the unit vector basis of l'~+ 1, By
definition (4) we have

ei,lI=ei,11+1 +cJ>(ei,11)e, i= 1, ,.. , n.

This proves Lemma 4. I

LEMMA 5 (Perturbation property I). Let e l ,,,.,e11 ,e11 +! be an
admissible basis of a subspace E c X and consider cJ> l' "., cJ> "' cJ> 11 + 1 E

exB(X*) such that cJ>IIE, ... ,cJ>11+1IE are the corresponding associated
functionals. Then for any e > 0 there is a <5 > 0 (depending on E and e)
satisfying the following:

For any cJ>Eex B(X*) with

(1) 11cJ>IE-cJ>11+IIEII~b

there is e E X such that

(2) e l' ... , e11' e is an admissible basis of a subspace Fe X whose
associatedfunctionaL~ are cJ>11F' ... , cJ>11IF, cJ>IF'

Proof Let e i, "' i = 1, ..., n, be the unit vector basis of
span {e 1, "., e11} ';::',I:C with e11 = e11, n' Fix e > O. A continuity argument yields
<5 > 0 with b < min( 1, e) satisfying

II

0< 1- L eiX*(ei,,,)
i= I

and

(4) 1(1-L:7~1 e iX*(e i. 11 ))-I_(1-L:;'=1 e icJ>11+,(ei. 11 )) -11 ~e/2 for
all e i = ± I, i = I, "., n, with L:7= 1e icJ> 11 + I (e i, 11) '* I,

whenever Ilx*IE-cJ>n+lIEII ~b, x*EB(X*j. (Continuity of the functions
X*IE ---> L:7= 1 e iX*(e i,11)')
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Now, fix cPEexB(X*) with IlcP 1E -cP,,+!\EII:'(6. Since 1>6 we have
cP ¢ {± cP 1 , ••• , ± cP", - cP" + d. We may assume cP -# cP" + " otherwise there
is nothing to prove. Define, for x* E B(X*),

f(x*) = min {(1- it, eix*(ei.,,))!(1 - it! eicP(ei,,,))1

e i= ±1, i= 1, ..., n, such that it! e icP"+l(ei,,,)-# I},

g(x*)=I:+x*(e,,+d, h(x*)=min(f(x*), g(x*)).

Clearly, f, g, hare w*-continuous and concave, Furthermore, we have

(5) f(x*),f(-x*)~O, g(x*)+g(-x*)~O for all x*EB(X*).

We claim

(6) h(x*)+h(-x*)~O for all x*EB(X*).

To prove (6), in view of (5), we only have to check the case h(x*) = f(x*),
h( -x*) = g( -x*). Note, X*IE= L7~l A;cP;IE for some Ai such that
L7~lIA;I:'(1. Hence x(E=(I-A)Y(E+Az;'E for some 0:'(A,:'(1, where
y*(e,,+d=O, Z(EE {±cP,,+lIE}' By definition we obtain

(7) g( -X*)=c-Az*(e"+l)' Using concavity and (5) we conclude

(8) f(x*) ~ (1 - A) f(y*) + Af(z*) ~ Af(z*).

Hence by (4),

h(x*)+h(-x*)

= g( -x*) + f(x*)

~1:-Az*(e,,+d+)~(I-z*Ctle;e;.,,))!(I-cPCtl eiei,,,))

~ I: - Az*(e" + d - AI: + A, ( 1 - z* Ct! e ie;,,, ) )!(1- cP" + 1 Ct, e iei." ) )

for a suitable choice of signs e;. (We used l1-z*(L7~, e;ei,,,)1 :'(2).
There are two possibilities:

Either z* = cP" +,
If Z*=cP"+I' then

or

h(x*) + h( -x*) ~ I: - A- AI: + A~ O.

If z*= -cP"+1> then

h(x*) + h( -x*) ~I: + A,- h~O



since in any case

INTERPOLATING BASES 115

This proves the claim.

Now we proceed as in the proof of Lemma 4. Put
r = conv( {±cP l , ... , ±cP n, ±cP}) and define e().cP + L:7~ I )"icPi) = X Since
IlcPIE-cPn+IIEII~6~e we obtain le(x*)-x*(en+I)I~e for all X*El.
Hence e(x*) ~ g(x*) for all x* Er, and, since e(x*) ~ f(x*), e(x*) ~ h(x*)
for all x* E l. According to [2, Theorem 2.1] there is an e E X with
e(x*) = x*(e) for all x* Erand x*(e) ~ h(x*) for all x* E B(X*).

This implies Ix*(e)-x*(en+I)I~e for all x*EB(X*) which yields (3).
Moreover, put ei. n+1= ei. n- cP(e i.n) e, i= 1, ... , n, and en+I. n+ 1= e. In view
of x*(e) ~f(x*) for all x* EB(X*), ei.n+ I' i = 1, ... , n + 1, must be the unit
vector basis of l/~+ I (this is the same argument as in the last part of the
proof of Lemma 4). This concludes the proof, since then

ei, n = e i. fl + I + C/J( e i. n) en + 1. n + 1 and en+l.n+1=e. I

LEMMA 6 (Perturbation property II). Let Ll be a w*-dense subset of
ex B( X* ). Consider an admissible basis e I' ... , en, en + I , ... , en + m of a sub­
space E of X and assume cP l , ... , cPm+nEeX B(X*) are such that
cP Ilf.' ... , cP n+mlf are the corresponding associated functionals. Then for any
e > 0 there are t/J k l , •.• , t/J kmE Ll andfl' ... , fm E X such that

(1) e I' ... , en, fl' ..., fm is an admissible basis of a subspace F of X
whose associated functionals are cP II,' ..., cP nlF' t/J k"" ..., t/J kml ,'

(2) inf{ lie - flllfE F} ~ ellell for all e E E.

Proof We use induction on m. The case m = 1 is proven by Lemma 5.
Assume Lemma 6 holds for a fixed m - 1. Then let el' ... , en, en +1, ... , en +m'
cP 1, ... , cP n + m be as in the hypothesis of Lemma 6. The induction hypothesis
yieldsfl' ... , fm ... I' t/Jkl' ... , t/Jkm_1 ELl such that

(3) e l , ..., en + I fl' ···,fm _ 1 is an admissible basis of a subspace G eX,
whose associated functionals are cP11r;' ... , cPn+ J Ic' t/J k'lr;' ... , t/J km IC'

(4) inf{lle glllgEG}~ellell/3foralleEE.

Apply Lemma 3 to obtain go, ..., gm-I such that e l , ... , en, go, ... , gm·l
again is an admissible basis of G with the same associated functionals as
before and such that in addition

i=}

i of. j'
i, j = 0, 1, ..., m - 1,
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where l/JkO= (/J,,+ I' Using Lemma 2 and induction we see that el, ...,e",

g\> ...,gm-I, go is an admissible basis with associated functionals
(/JIIG' ..., (/JIIG' l/JkIIG' ..., l/Jkm IIG' (/J,,+ IIG' Apply Lemma 5 again to find JE X,
l/J k

m
E11, such that

(5) e l , ..., e", gl' ..., gm-I' J is an admissible basis of a subspace
FcX with associated functionals (/JIll" ..., (/J"IF' l/JkIIF' ..., l/Jkm-IF' l/JkmlF '

(6) inf{llg- JIIIJEF} ~ellgll/3 for all gEG.

Arguments (4)-(6) yield (1) and (2) and conclude the induction. I

4. PROOF OF THE THEOREM

Let (/J"EexB(X*) be such that {±(/J"lnEN} is w*-dense in exB(X*)
and assume that for each m we have

(1 ) (/J m ~ { ± (/J" In # m, n = 1, 2, ... }.

Fix a norm dense subset {x k Ik = 1, 2, ... } of B( X). We use induction to find
an admissible basis (e,,) of X whose associated functionals are
(/JI, (/J2' (/J3' .... For mo= lone can take any norm one vector e l E X such
that (/JI(e l)= 1. Now assume that we have an admissible basic sequence
e l , •.. , emnEX already such that (/JIIE' ..., (/J mnlr; are the corresponding
associated functionals (E = span{e I' ... , em n })' Put

(2) G=span{xl, ...,x,,}.

Apply Lemma 1 to find 11' ...,lr E X such that e l , •.. , emn , 11, ...,lr is an
admissible basis sequence spanning a subspace F' with

(3) inf{llg-IIIIIEF'} ~ Ilgllln for all gEG. Assume l/JI' ... , l/JrE

ex B(X*) are such that (/Jllf' ..., (/Jmnlf' l/JIIF' ..., l/Jrlf are the corresponding
associated functionals. Then apply Lemma 6 to find JI' ... , Jr and
(/Jkl' ..., (/Jk" k I' ..., k r > m", such that

(4) e t , .•• , emn , JI' .·.Jr is an admissible basis sequence spanning a
subspace F of X whose associated functionals are (/JIll" ..., (/JmnI

F
'

(/J kl IF ' ... , (/Jk'IF and such that

(5) inf{IIJ -IIIIJEF} ~ Illllln for allIEF'.

It is possible to apply Lemma 6 in this situation, we may at first get such Ji
where - (/Jk. are the associated functionals for some J'. In this case we take

jlE'

- fj instead fj. Hence without loss of generality we can assume there is
such an admissible basis sequence satisfying (4) and (5).

Note that k I, ... , k, may not be ordered according to the order of the
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integers. Furthermore, there may be "gaps" between the k j • To fill in the
gaps, put s = (maxj~ 1. .. r k) - m" and consider

(6) N= {m,,+ 1, m,,+2, ... , m,,+s}\{k l , ••• , k r }.

Put N = {k r + I' k r + 2, ... , k,}. Apply Lemma 4, s - r times to findIr+ l' ... ,r
such that eI' ... , em" II, ..., In Ir + l' ... , j, is an admissible basis sequence
spanning a subspace HeX whose associated functionals are

cP k I , .•. , cP k .
r + IIf ,\'~ f I

Of course, (5) remains valid for H instead of F since Fe H. Finally, we
reorder the cPk,' To this end apply Lemma 3 to find g l' ... , g, E H such that
eI' ... , em" g l' ... , g, is an admissible basis of H whose associated functionals
are the same as before and such that cPk,( g;) = 0 if i"# j, i, j = 1, ... , s. By
Lemma 2 one may permute the indices of the gr Hence let hi, ..., h, be a
permutation of 1, ..., s such that

k h2 = m" + 2, ... , k h , = m" + s.

Put emn +j = gh" j = 1, ... , s. Then, e 1 , ... , emn , emn + I' ... , e"'n+ s is an admissible
basis of H whose associated functionals are

<P mn + 111i'

In view of (3) and (5) we have

(7) inf{ Ilg - hili h EH} ~ 211gll/n for all gE G.

Put m n + 1 = m n + s. This finishes the induction, which clearly yields an
interpolating admissible basic sequence whose associated functionals are
cP I' cP 2 , •••• By (2) and (7) this basic sequence is a basis of X. In case X is a
simplex space we can start with e l = 1. Then, if cP" E ex B(X*) + (i.e., cP" are
the Dirac functionals of extreme points of the underlying simplex), we have
cPn(e1) = 1 for all n. If e i. ", i = 1, ... , n, is the unit vector basis of
span{e 1 , .•• , en} then one obtains by induction O~ei.n~el= 1 and
L7~ 1 ei." = 1. Hence in this case (en) is a p.p.u.-basis. I
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