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It is shown that, given a compact metrizable Hausdorff space K and a dense
sequence (7,) in K, there is a monotone basis of C(K) which is interpolating with
nodes(z,). This gives a positive answer to a question raised by Gurarii.  © 1988

Academic Press. Inc.

1. INTRODUCTION

Let X be a Banach space and (e,) a sequence of elements of X. (e,) is
called a basis of X if, for each x € X, there is exactly one representation of x
of the form x=3%7_, a,e,, o, real or complex numbers. In this case, by
uniform boundedness, we have sup, ||S,|| < oo, where S, (x)=237_, a,es.
n=1,2, .. sup, |S,| is called the basis constant of (x,). If sup, |S,| =1,
then (e,) 1s called a monotone basis.

In spaces of continuous functions on compact Hausdorff spaces K (C(K)-
spaces), one can connect bases with the notion of interpolation of
functions:

A basis (e,) of a C(K)-space is called interpolating with nodes 1, € K if,
for each fe C(K), f(t,)=S,(fNt), k=1, ...,n,n=12,.. [5] In this case
the nodes (r,) are necessarily dense in K [5, Proposition 1.3.7]. The
foremost example of an interpolating basis is the Schauder system (e,) in
C(0, 1). This basis is closely connected with a sequence of special peaked
partitions of unity e, ,, i=1,..,n, n=1,2, .., of C(0,1). That is,

"
Ogeﬂnsl’ Z ei,nzl’ el,"(tk):{

i=1

1, i=k
0, i#k fk=1,.,n,

and span{e, ,  ,}"* ! >spanfe, ,}"_,. {t,, 15, ..} is a given sequence dense

i= i=1"
in [0, 1].. Here the Schaudersystem (with respect to ¢, f5, ...) is defined by
e, =e, ., n=1,2 .. One easily obtains that (¢,) is a monotone basis and,
for eaCh .fe C(O’ 1)7 .f(tk) = 7: 1 f(ti) ei. n(lk) = Sn( .f)(rk)ﬂ k - l’ 2’ e 1,
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n=1,2,.. ([5 2.3] broken-line interpolation). Note that the preceding
conditions on e;, imply that {e,,li=1,..,n} corresponds to the unit
vector basis in spanfe; ,}"_, /" (|27, we, | =max; |a)|).

Gurarii showed in[1] that for each ¢>0, any compact metrizable
Hausdorff space K and sequence (z,) dense in K there is a basis of C(K)
which has a basis constant <1+ ¢ and which interpolates with nodes (z,,).
Since the construction in [1] does not yield a monotone basis in general
Gurarii raised the question whether there is, in any separable C(K)-space, a
monotone basis interpolating for prescribed notes [1; 5, 4.3.5].

We give a positive answer to this question by constructing bases in a
larger class of Banach spaces including C(K)-spaces, which are monotone
and interpolate for given nodes. These bases again have the characteristic
features of the Schauder systems described above. Indeed the Schauder
systems on [0,1] and their generalizations to functions with several
variables [ 5, Chap. 3] are special cases of the following construction.

2. ADMISSIBLE BASES IN L ,-PREDUAL SPACES

Let X be a Banach space whose dual is isometrically isomorphic to an
L -space. For simplicity we consider Banach spaces over the real numbers,
however, all constructions carry over to the complex field. The class of L,-
predual spaces of course includes C(K)-spaces and moreover, e.g., sublat-
tices of C(K), simplex spaces (i.e., spaces of continuous affine functions on
a compact Choquet simplex) and C,(K)-spaces (i.c., where K is a compact
Hausdorff space, 6: K— K is a continuous involution and C_(K)=
{fe C(K)|f(ck)= — f(k) for all ke K}) [2].

DerFiNITION. Let X be an L;-predual space and assume that @, are
elements of the extreme point set of the unit ball of X*, ex B(X*). A basis
(e,) of X is called interpolating with nodes (®,) if, for every fe X, &, (f) =
DS () k=1,..nn=12,..Here S,(f)=>7_ e, if =27, arey.
In case X = C(K), the elements of ex B(X*) are the Dirac functionals (up to
the sign) of the elements in K. Hence in this case the notion of an inter-
polating basis coincides with that of Section 1.

The following proposition is due to Lazar and Lindenstrauss [2, 4].

ProPOSITION 1. Let X be a separable Banach space. Then X* x L, iff
there are subspaces E,c E;c --- < X such that X=\E, and E,=1"_ for
all n.
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Let e, ,, i=1,..,n be the unit vector basis of E,=/" . Then, after a

oL

suitable rearrangement of the indices, there are numbers «; , such that
ei‘nzez',n+l +ai.nen+l<n+l, l: la ey M (*)
Put ¢,=e¢, , for all n. Then we have [4;3, Lemma 1.1 ].

PROPOSITION 2. (e,) is a monotone basis of X =JE,.

We call bases of X, which are constructed in this way, admissible bases. If
X is a simplex space (which is equivalent to ex B(X) # ) then the ¢, , can
be taken to be peaked partions of unity (p.p.u.’s). That is, 0<e; , <1 and
>, e, ,=1in addition for all n [2]. In this case we call (e,) a p.p.u. basis
of X.

PROPOSITION 3. Admissible bases are interpolating.

Proof. We retain the preceding notation. For each n there is a unique
@, eex B(X*) with

qs,,(ei.,,m):{(l)’ :: forall i=1,.,n+m m=0,1,2,.. [3,6]

Using induction, one obtains, by (*),

SAfH)=Y ®(f)e,, foreachfeX.

Then clearly @ (S, () =D, (f). k=1,..n |

The @, of the preceding proof are called the functionals associated with
the admissible basis (e, ).

THEOREM. Let X be a separable L,-predual space. Assume that
P, eex B(X*), n=1,2,.., satisfy &,#xP,, if n#m and
{2®,In=1,2, ..} =ex B(X*) (w*-closures). Then there is an admissible
basis e, e,, ... of X whose associated functionals are @, ®,, ... Moreover, if
X is a simplex space and @, € (ex B(X*)) ., then e, e,, ... can be chosen to be
a p.p.u.-basis.

If X= C(K) this includes, in view of Propositions 2 and 3, a positive
answer to the problem of Gurarii mentioned in Section 1. We postpone the
proof of the Theorem to Section 4. First, we shall study some special
properties of admissible bases.
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3. PROPERTIES OF ADMISSIBLE BASES

Throughout this section let X be a separable L,-predual space.

Lemma 1 (Extension property). Let e, .., ¢, be an admissible basis of u
subspace E < X. Assume that G < X is finite dimensional and take ¢ > 0. Then
there are a positive integer m and elements e, , |, ..., e € X such that

(1) ey, .., e, is an admissible basis sequence spanning a subspace F
(2) inf{lig—fl|feF}<elgl for all geG.

Proof. By [2, Theorem 3.1] there is an /" * "-subspace F < X containing
E with

inf{llg—flllfe F}<elgl forall geG.

Since E=/" there are subspaces E=E,c E\cE,c --- < E, =F, where
E,~I"** for all k [4]. Let ¢, ,, i=1,..,n, be the unit vector basis of
E=/" such that e,=¢, ,. Then one can find an arrangement of the indices
of the unit vector basis of E,, e, ,,,, i=1,..,n+ 1, such that

ei,n:ei,n+1+aien+l,n+1’ lzl""’n’

for some numbers «; [4]. Put ¢,,;=¢,,, .- Induction concludes the
proof. |}

LemMMA 2 (Permutation property). Let (e.) be an admissible basis of X
whose associated functions are (). If @, ,(e,)=0 for some n then
€Ly s €y 1> Cr1s €ns €4 yay - IS an admissible basis of X with associated

ns
functionals @, ..., P L/ J ¢

Proof. Put E,=span{e,,..e.}. Hence E, =/, k=1,2,.. Consider
the unit vector basis e, , of E,, i=1, .., k, such that ¢, =¢, ,. We have

n—1»

(1) ei,n—-] :ei.n+¢n(ei.n~l)en’ l= 1’ bhds] n_l and

(2) e .=e€ i1 +P,iile; ) e, =1, .., n Hence

(3) e, ... =e, by our assumption. We obtain

(4) ei,nfl = ei.n+l + ¢n(ei,n71)en,n+l + (¢n+1(ei,n) + ¢n(ei,n7])
¢n+l(en))en+l=ef.n+l+¢n(ei,n41)en,n+l+¢n+1(ei,n) en+l' Put

(5) gi,nzei,n+l +¢n(ei,n—])en,n+ls l= 1’ ey B 19 én.n=€n+l' Then
&1 n» s €, , 18 the unit vector basis of /7 since

=sup{ P, ( Y /1,»5,-‘,1>

i=1
=max |4, for all 4;.

i<n

n

Z )“i'éi‘n

i=1

je{],...,n—],n-i-l}}
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Moreover, put

(6) Ei.n+1 zei,71+l’ l: 1’ ey 1 — 1’ t(";n,n+] =en+]9 én+l.n+1 :en,n+l‘
Again, (205 42, 1] = sup{IBu(Srrt A48, ) k=1, on+1} =
max,; ., |4}, for all ;. We have (1,4, 5)

Cin_1—¢€; n+ (pn+ l(ei, n) €, ns 1= 1» vy 1 — 1

and

éi,nzéi_nJrl+®n(ehnfl)en+l.n+la lzl,,}’l—l ((3)1 (4)5(5)? (6))*

€

Y

an— Ynon+1-

Since én. n=C€hits €hiptnp1 =€, WE obtain Lemma 2. l
In the following lemma let e, ,, i=1, .., n, be the unit vector basis of

span{e,, .. e,} withe,=e, ,,n=1,2, ...

LeMMA 3 (Exchange property). Let (e;) be an admissible basis of X
whose associated functionals are (@,). Then, for any index set
41, . n+m}, the sequence ey, .., €,.1 nims Cnsansms > €nims
€rmals - IS an admissible basis of X whose associated functionals are again
(D) (in the same order).

Proof. Tt suffices to assume m=2, Lemma 3 follows then by using
induction. {The case m =1 is trivial because ¢, ,., =¢,. ). We have
€in=C€ g1t d)n+ l(ei,n) Chtitnri
:(’,-‘ n+2 + (pn+ l(el'.n) 6’,,+ Ln+2 + (d5n+2(ei,n+l)

+(Dn+l(ei‘n) (pn+2(en+l,n+l))en+2,n+2’ l= ]7 Ras) n(l)

Put
€ini1=€ini2t (Dyiale i)
+ @, i€ ,) Pyt nyi))€rsania i=1,.,n (2)
and
én+l,n+I:en+1‘N+2' (3)

Then {&, ,,.,]i=1,..,n+ 1} is the unit vector basis of /7*'. Moreover, by
(1)’ (2), (3)’ ei,rzzéi,r1+1 + ¢n+1(ei,n) én+1,n+1a l= la ey 1y and Ej,n+l =
w2t P, &, 1), 2,2, J=1,..,n+1 The latter equation follows
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from (3), if j=n+1, since @, (e, ,+2)=0. If j<n-+1 this equation
follows from (2) since then

¢n+2(é/.n+l)=(pn+2(ei,n+l)+¢n+l(ei.n) ¢n+2(en+],n+l)'

This concludes the proof in view of (3). ||

In the proof of the next lemma we make use of the following fact due to
Lazar and Lindenstrauss {2, Theorem 2.1], we state here only a special
version:

Consider I'=conv(I',u —1I',), where I', is a w*-closed face of
B(X*). Let - B(X*) > R be concave, w*-continuous and assume
f(x*)+ f(—x*)=0 for all x* e B(X*). Suppose é: I > R is w*-
continuous, affine and é(0)=0 such that é< f|. Then there is
ee X with é(x*)=x*(e), x*e I, and x*(e) < f(x*), x* € B(X*).

LeMMA 4 (Dual extension property). Let e, ... e, be an admissible
basis of a subspace Ec X. Let @,, .., ®,eex B(X*) be such that @,
k=1,..,n, are the corresponding associated functionals. Consider
Peex BIX*N{+ D, |k=1,..,n}. Then there is ec X such that e, .., e,,
e is an admissible basic sequence spanning a subspace Fc X and
D igs s Doy 5y D)1 are the corresponding associated functionals.

Proof. Let e,,, i=1,..,n be the unit vector basis of /7 = E with
e,=e, ,. Put ' =conv{®,, .., ®,, &} and I'=conv(l"yu —TI). Then I'|
is a w*-closed face of B(X*) (because X*~L, and &, .., P,

@ cex B(X*)). Define /2 B(X*) > R by

f(x*)=min {(1 — Zn: @,-x*(e,-y,,))/(l — Zn: @,&P(e,-,n))I

=1 i=1

0,=+1, i=1,.,n, suchthat ) @,-(D(e,-’,,);él}, x*e B(X*).

i=1

It is easily checked that f is concave, *-continuous and
f(x*)+ f(—x*)=0 for all x*e B(X*). We even have f(x*), f(—x*)=0
since >.7_, |x*(e; )| < 1. Put

(1) é(AP+3Xr_,4,P)=4 if |);|+Z;’=, [4,] < 1. We have é(x*)<
f(x*) for all x* e I". Hence there is e € X such that

(2) x*(e)=é(x*), x*er,

(3) x*(e) < f(x*), x*e B(X*). Put

4) e pp1=¢,,—Ple, e i=1.,nande, ., =e
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Then by (1), (2), (4),

1, i=j .
(pj(ei,n+l)={0 l#j’ ¢(ei.ll+]):0’l<n+1’

¢(elz+l,n+1): 17 (D'(elr+l,r1+l):0» ]= l’ erey n.

7
Moreover, by (3) and (4),

n+ i
Y olx*(e ) <1 for all x*e B(X*).

i=1

This proves that e, ., i=1,.., a4+ 1, is the unit vector basis of /7*'. By
definition (4) we have

ei.nzei,n+1+¢(ei.n)ea l.=1,---, n.
This proves Lemma 4. ||

LEMMA 5 (Perturbation property 1) Let e,,..,e,,e,,, be an
admissible basis of a subspace Ec X and consider ®,,..,P,, P, €
ex B(X*) such that @, .., D,z are the corresponding associated
functionals. Then for any ¢>0 there is a 6 >0 (depending on E and ¢)
satisfying the following:

For any ® eex B(X*) with

(1) @Pg—D, el <0
there is e € X such that

(2) ey, ..,e,, e is an admissible basis of a subspace Fc< X whose
associated functionals are @z, ..., @ pr, Py,

() le—e,, l<e

Proof. Let e, i=1,.,n be the wunit vector basis of
span{e,, .., e,} =" withe,=e¢, ,. Fix £¢>0. A continuity argument yields
d >0 with d <min(l, &) satisfying

0< ] - Z @ix*(ei. n)

i=1
and

(4)
all ©,= +

i=1

(1=%7_, @,x*e ) '—(1=-21,0,0,,(e,) 'I<¢2 for
1,i=1,..n with ¥, 0,&,, (e, ,)#]1,

whenever | x* ,—@,, .l <d, x*e B(X*). (Continuity of the functions
x* e 2l 0,x%(e,).)
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Now, fix ®@eex B(X*) with || — D, . <d. Since 1> we have
D¢{+b,, .., +P,, —PD,,,}. We may assume @ # P, |, otherwise there
is nothing to prove. Define, for x* € B(X*),

f(x*) =min {(1 —Z 6.x%(e.n ) (1 _,Zl 0.(e, )){

©,=+1,i=1,..,n, such that Z 0.9, (e ,)# 1},
i=1

gx*)=e+x*(e, ),  h(x*)=min(f(x*), g(x*)).
Clearly, /. g, h are w*-continuous and concave. Furthermore, we have
(5) f(x*), f(—x*)=20, g(x*)+g(—x*)=20 for all x*e B(X*).
We claim
(6) A(x*)+h(—x*)=0 for all x*e B(X*).
To prove (6), in view of (5), we only have to check the case h(x*) = f(x*),
h(—x*)=g(—x*). Note, x* ;=3>7"!4,®,, for some 4, such that

ilg

r*l1Al<1. Hence xfp=(1—A)yk+ iz} for some 0<Ai<1, where
y¥(e, 1)=0, z%;e {+ P, ,}. By definition we obtain

(7) g(—x*)=¢e— Az*(e,, ). Using concavity and (5) we conclude
(8) flx*)=(1—=24)f(y*)+ if(z*) 2 Af(z*
Hence by (4),
h(x*)+ h(—x¥*)
= g(—x*)+ f(x*)

>e—1z*(e,,+l)+z(1—z*(i @ie.-,,.))/<1—¢(i @e))
28_}‘2*(en+1)_l£+i<1—2*<i @iei,n>>/<l—¢n+l<i @iei,n>>

for a suitable choice of signs ©,. (We used |t —z*(3.7_, O.e, ) <2).
There are two possibilities:
Either z*=¢, or *=—, .
If z*=¢,,,, then

h(x*)+h(—x*)=e—A—Aie+ A1 >0.
IfZ*= _¢n+1, then

Ax*)+h(—x*)ze+i—4e20
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since in any case

(1-5(3 o)) (1-0.0( £ 0050

This proves the claim.

Now we proceed as in the proof of Lemmad4  Put
F=conv({+@®,,.., +®,, +®}) and define é(AP+3" , 1,P,)=2 Since
H(D‘,:~—<D,,+1|EH<5<6 we obtain |é{x*)— x* ( ,,+,)i<a for all x*el.
Hence é(x*) < g(x*) for all x*e I, and, since é(x*) < f(x ¥ h(x*)
for al] x*el. Accordmg to [2, Theorem 2.1] there is an eeX with
é(x*)=x*(e) for all x*e I and x*(e) < h(x*) for all x* € B(X*).

ThlS implies |x*(e)— x*(e,, )| <¢ for all x* e B(X*) which yields (3).
Moreover, pute, ,,,=¢, ,—®(e; ,)e,i=1,...,nande, , ,. . =e Inview
of x*(e) < f(x*) for all x*e B(X*), e, ,,,, i= l, ... n+ 1, must be the unit
vector basis of /7*! (this is the same argument as in the last part of the
proof of Lemma 4). This concludes the proof, since then

€in= 1n+l+¢( i) €k tina and Chvinsr =€ I

LeMMA 6 (Perturbation property 11). Let A be a w*-dense subset of
ex B(X*). Consider an admissible basis e, ..,e,, €, s .. €,.,, Of a sub-
space E of X and assume @,,.., @D, ,,cex B(X*) are such that
D\ Dy, are the corresponding associated functionals. Then for any
£>0 there are Yr,,, .., €4 and f,, .., f,, € X such that

(1) ey, .r €, f1s o fon Is an admissible basis of a subspace F of X
whose associated functionals are @,,,, ..., D,,,, l//,\,w_, ey l//kw,

(2) inf{|e—fl|feF}<¢lell for all ec E.

Proof. We use induction on m. The case m=1 is proven by Lemma 5.
Assume Lemma 6 holds for a fixed m — 1. Then let e, ..., €,, €4 15 r €14 pr»
®,, .., P, , beasin the hypothesis of Lemma 6. The induction hypothesis
yields f1, ., £ 1 Wiys oo Wi, _, € 4 such that

(3) ey, €1 f1s S 18 an admissible basis of a subspace G < X,
whose associated functionals are @, .., @, . w,%, lﬁkm’l‘u.

(4) inf{lle—g|lgeG}<elel/3 for all ee E.

Apply Lemma 3 to obtain g, .., g, such that e, ...e,, gos . &m-1
again is an admissible basis of G with the same associated functionals as
before and such that in addition

L e
=0 m—1,

!pk,(gi)z{o, oy
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where , =®,, . Using Lemma 2 and induction we see that ¢, .., e,,
1> 8m_1> Lo 18 an admissible basis with associated functionals
Diigs o Prigr Wiy o s Vi 11> Prs1jg- APPly Lemma 5 again to find fe X,
W, €4, such that

(5) eys-e,s €1sen &m_1, J 18 an admissible basis of a subspace
F< X with associated functionals @,,, .., ®,,, Viro oo Wiy o Vi,

(6) inf{llg—fllfeF}<elgl/3 for all geG.
Arguments (4)-(6) yield (1) and (2) and conclude the induction. ||

4. PROOF OF THE THEOREM

Let @, cex B(X*) be such that {+®,|ne N} is w*-dense in ex B(X*)
and assume that for each m we have

(1) @,¢{+d,ln# m n=12 .1}

Fix a norm dense subset {x,|k=1,2, ..} of B(X). We use induction to find
an admissible basis (e,) of X whose associated functionals are
®,, D,, D, ... For my=1 one can take any norm one vector e; € X such
that @,(e,)= 1. Now assume that we have an admissible basic sequence
€y, ... e, €X already such that &, .., <Pmnw are the corresponding
associated functionals (E =span{e,, .., e,, }). Put

(2) G=span{x,, .., x,}.

Apply Lemma 1 to find 7, .., f,e X such that e, .., e, , fi,.. [, is an
admissible basis sequence spanning a subspace F with

(3) inf{l|lg—fl|feF}<lgl/n for all geG. Assume V.., ¥, €
ex B(X*) are such that @, .., D, Y1, - ¥, are the corresponding
associated functionals. Then apply Lemma6 to find f,,.. f, and
Dyps s Py kyy oy k,>m,,, such that

(4) ey, ..e,, f1,.f, is an admissible basis sequence spanning a
subspace F of X whose associated functionals are @ L, &
dik”F, dikrlf and such that

(5) inf{|f —7l|fe Fy<|fl/n for all fe F.

1igs - P>

It is possible to apply Lemma 6 in this situation, we may at first get such f;
where —®,, are the associated functionals for some j. In this case we take
—f; instead f;. Hence without loss of generality we can assume there is
such an admissible basis sequence satisfying (4) and (5).

Note that k,, .., k, may not be ordered according to the order of the
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integers. Furthermore, there may be “gaps” between the k;. To fill in the
gaps, put s=(max;_, ,k;)—m, and consider

6) N={m,+1,m,+2,..m,+s\{k, ..k}

Put N={k,, .k, 2, . k,}. Apply Lemma 4, s — r times to find f, |, ..., [,
such that e, ..,e, ., fi, . frs fro1, o f, 1 an admissible basis sequence
spanning a subspace H = X whose associated functionals are

Do Py Ppy s ea Dy B By

Of course, (5) remains valid for H instead of F since F< H. Finally, we
reorder the @, . To this end apply Lemma 3 to find g, .., g,€ H such that
€15 e € » 815 - &, 15 an admissible basis of H whose associated functionals
are the same as before and such that @,(g,)=01if i#j, i, j=1,..,s By
Lemma 2 one may permute the indices of the g,. Hence let 4, .., h, be a
permutation of 1, ..., s such that

ky=m,+1, kp=m,+2, . k,=m,+s.

Pute, ., =g,,j=1,..,5 Then, e, .., €, €, s €y, ., is an admissible
basis of H whose associated functionals are

Dy @ o

Mg (pm,,+ Ly Myt 20 djm,,—r Sy’

In view of (3) and (5) we have
(7) inf{|g—h||he H}<2|gl|i/n for all g€ G.

Put m, ., =m,+s. This finishes the induction, which clearly yields an
interpolating admissible basic sequence whose associated functionals are
®D,, D,, ... By (2) and (7) this basic sequence is a basis of X. In case X is a
simplex space we can start with e, = 1. Then, if @, eex B(X*), (ie, @, are
the Dirac functionals of extreme points of the underlying simplex), we have
& (e;)=1 for all n. If e, ,, i=1,.,n is the unit vector basis of
span{e,, .., e,} then one obtains by induction 0<e;, ,<e, =1 and
> e, ,=1. Hence in this case (e,) is a p.p.u.-basis. |}
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